博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
NTC热敏电阻的基本特性
阅读量:4051 次
发布时间:2019-05-25

本文共 2594 字,大约阅读时间需要 8 分钟。

NTC热敏电阻的基本特性
NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有 接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、 温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的 检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的 应用需求。 

NTC热敏电阻的基本特性 电阻-温度特性

热敏电阻的电阻-温度特性可近似地用式1表示。

(式1) R=R0 exp {B(1/T-1/T0)}

R : 温度T(K)时的电阻值
Ro : 温度T0(K)时的电阻值
B : B 值
*T(K)= t(ºC)+273.15

但实际上,热敏电阻的B值并非是恒定的,其变化大小因材料构成而异,最大甚至可达5K/°C。因此在较大的温度范围内应用式1时,将与实测值之间存在一定误差。
此处,若将式1中的B值用式2所示的作为温度的函数计算时,则可降低与实测值之间的误差,可认为近似相等。
(式2) BT=CT2+DT+E
上式中,C、D、E为常数。
另外,因生产条件不同造成的B值的波动会引起常数E发生变化,但常数C、D 不变。因此,在探讨B值的波动量时,只需考虑常数E即可。 
  常数C、D、E的计算
常数C、D、E可由4点的(温度、电阻值)数据 (T0, R0). (T1, R1). (T2, R2) and (T3, R3),通过式3∼6计算。
首先由式样3根据T0和T1,T2,T3的电阻值求出B1,B2,B3,然后代入以下各式样。
NTC热敏电阻的基本特性
  电阻值计算例

试根据电阻-温度特性表,求25°C时的电阻值为5(kΩ),B值偏差为50(K)的热敏电阻在10°C~30°C的电阻值。

  步 骤

(1) 根据电阻-温度特性表,求常数C、D、E。

T
o=25+273.15 
 
 
T
1=10+273.15 
 
 
T
2=20+273.15 
 
 
T
3=30+273.15

(2) 代入BT=CT2+DT+E+50,求BT

(3) 将数值代入R=5exp {(BT1/T-1/298.15)},求R。

*T : 10+273.15~30+273.15

  电阻-温度特性图如图1所示
NTC热敏电阻的基本特性

NTC热敏电阻的基本特性 电阻温度系数

所谓电阻温度系数(α),是指在任意温度下温度变化1°C(K)时的零负载电阻变化率。电阻温度系数(α)与B值的关系,可将式1微分得到。

NTC热敏电阻的基本特性
这里α前的负号(-),表示当温度上升时零负载电阻降低。

NTC热敏电阻的基本特性 散热系数 (JIS C2570-1)

散热系数(δ)是指在热平衡状态下,热敏电阻元件通过自身发热使其温度上升1°C时所需的功率。

在热平衡状态下,热敏电阻的温度T1、环境温度T2及消耗功率P之间关系如下式所示。
NTC热敏电阻的基本特性
产品目录记载值为下列测定条件下的典型值。

(1) 25°C静止空气中。
(2) 轴向引脚、经向引脚型在出厂状态下测定。

NTC热敏电阻的基本特性 最大功率(JIS C2570-1)

在额定环境温度下,可连续负载运行的功率最大值。

个别产品规格书上可能记载为以往的名称“额定功率”。
产品目录记载值是以25°C为额定环境温度、由下式计算出的值。
(式) 额定功率=散热系数×(最高使用温度-25)

NTC热敏电阻的基本特性 容许运行功率

这是使用热敏电阻进行温度检测或温度补偿时,自身发热产生的温度上升容许值所对应功率。(JIS中未定义。)容许温度上升t°C时,最大运行功率可由下式计算。

容许运行功率=t×散热系数

NTC热敏电阻的基本特性对应环境温度变化的热响应时间常数(JIS C2570-1)

指在零负载状态下,当热敏电阻的环境温度发生急剧变化时,热敏电阻元件产生最初温度与最终温度两者温度差的63.2%的温度变化所需的时间。

热敏电阻的环境温度从T1变为T2时,经过时间t与热敏电阻的温度T之间存在以下关系。

T= (T1-T2)exp(-t/τ)+T2
(T2-T1){1-exp(-t/τ)}+T1
常数τ称热响应时间常数。
上式中,若令t=τ时,则(T-T
1)/(T2-T1)=0.632。
换言之,如上面的定义所述,热敏电阻产生初始温度差63.2%的温度变化所需的时间即为热响应时间常数。
经过时间与热敏电阻温度变化率的关系如下表所示。
NTC热敏电阻的基本特性
NTC热敏电阻的基本特性
产品目录记录值为下列测定条件下的典型值。
(1) 静止空气中环境温度从50°C至25°C变化时,热敏电阻的温度变化至34.2°C所需时间。
(2) 轴向引脚、径向引脚型在出厂状态下测定。

另外应注意,散热系数、热响应时间常数随环境温度、组装条件而变化。

NTC热敏电阻的基本特性NTC热敏电阻使用注意事项

请严格遵守以下事项,否则可能会造成NTC热敏电阻损坏、使用设备损伤或引起误动作。

(1)

NTC热敏电阻是按不同用途分别进行设计的。若要用于规定以外的用途时,请就使用环境条件与本公司联系洽谈。

(2) 设计设备时,请进行NTC热敏电阻贴装评估试验,确认无异常后再使用。
(3) 请勿在过高的功率下使用NTC热敏电阻。
(4) 由于自身发热导致电阻值下降时,可能会引起温度检测精度降低、设备功能故障,故使用时请参考散热系数,注意NTC热敏电阻的外加功率及电压。
(5) 请勿在使用温度范围以外使用。
(6) 请勿施加超出使用温度范围上下限的急剧温度变化。
(7) 将NTC热敏电阻作为装置的主控制元件单独使用时,为防止事故发生,请务必采取设置“安全电路”、“同时使用具有同等功能的NTC热敏电阻”等周全的安全措施。
(8) 在有噪音的环境中使用时,请采取设置保护电路及屏蔽NTC热敏电阻(包括导线)的措施。
(9) 在高湿环境下使用护套型NTC热敏电阻时,应采取仅护套头部暴露于环境(水中、湿气中)、而护套开口部不会直接接触到水及蒸气的设计。
(10) 请勿施加过度的振动、冲击及压力。
(11) 请勿过度拉伸及弯曲导线。
(12) 请勿在绝缘部和电极间施加过大的电压。否则,可能会产生绝缘不良现象。
(13) 配线时应确保导线端部(含连接器)不会渗入“水”、“蒸气”、“电解质”等,否则会造成接触不良。
(14)

请勿在腐蚀性气体的环境(CI2、NH3、SOX、NOX)以及会接触到电解质、盐水、酸、碱、有机溶剂的场所中使用。

(15) 金属腐蚀可能会造成设备功能故障,故在选择材质时,应确保金属护套型及螺钉紧固型NTC热敏电阻与安装的金属件之间不会产生接触电位差。

使用时若有其他不明之处,请垂询本公司销售人员。

转载地址:http://mnsci.baihongyu.com/

你可能感兴趣的文章
iOS AFN 3.0版本前后区别 01
查看>>
iOS ASI和AFN有什么区别
查看>>
iOS QQ侧滑菜单(高仿)
查看>>
iOS 扫一扫功能开发
查看>>
iOS app之间的跳转以及传参数
查看>>
iOS __block和__weak的区别
查看>>
Android(三)数据存储之XML解析技术
查看>>
Spring JTA应用之JOTM配置
查看>>
spring JdbcTemplate 的若干问题
查看>>
Servlet和JSP的线程安全问题
查看>>
GBK编码下jQuery Ajax中文乱码终极暴力解决方案
查看>>
Oracle 物化视图
查看>>
PHP那点小事--三元运算符
查看>>
解决国内NPM安装依赖速度慢问题
查看>>
Brackets安装及常用插件安装
查看>>
Centos 7(Linux)环境下安装PHP(编译添加)相应动态扩展模块so(以openssl.so为例)
查看>>
fastcgi_param 详解
查看>>
Nginx配置文件(nginx.conf)配置详解
查看>>
标记一下
查看>>
IP报文格式学习笔记
查看>>